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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM NO. 1097

SCALE EFFECT AND OPTIMUM RELATIONS FOR SEA SURFACE PLANING!

By L. Sedov

From the general dlmensional and mechanical similarity theory it
follows that a condition of steady motioaﬁpf a given shapg\bottom with
constant speed on the surface of water is determined by four nondimen—
sional parameters. By considering the variouns systems of indEEEEHEﬁf‘“
parameters vhich are applied in theory and practice and in special tests,
there is determined their mutual relations and their suitability as
planing characteristics., In studying the scale effect on the basis of
the Prandtl formula for the friction coefficient for a turbulent condi-
tion the order of magnitude is given of the error in applying the model
data to full scale in the case of a single—step bottom. For a bottom of
complicated shape it is shown how from the test data of the hydrodynamic

characterigstics for one speed with various loads, or one load with vari-
ous speeds, there may be obtained by simple computation with good ap-—
proximation the hydrodynamic characteristics for a different speed or
for a different load. (These considerations may be of use in solving
certain problems on the stability of planing.) This permits extrapolat—
ing the curve of registance against speed for large speeds ilnaccessible
in the tank tests or for other loads which were not tested, The data
obtained by computation are in good agreement with the test results.
Problems regarding the optimum trim angle or the optimum width in the
cage of planing of a flat plate are considered from the point of view of
the minimum resistance for a given load on the water and planing speed.
Formulas and graphs are given for the optimum value of the planing coef—
ficlent and the corresponding values of the trim angle and width of the
flat plate.

1. GENERAL REMARKS ON THE HYDRODYNAMIC FORCES IN PLANING

First, consider the various systems of parameters by which the hy—
drodynamic forces in planing with constant speed are determined for a

1Report No. 439 of the Central Aero-Hydrodynamical Institute,
Moscow, 1939.
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bottom of a certain shape. The shape of the bottom is fixed but the
scale, determined by the beam at the step, is introduced as a funda-—
mental variable parameter, Furthermore, planing on & single step is
chiefly borne in mind. '

The force acting on each element of the bottom may be decomposed
into the tangential and normal components. The normal component is
determined by the pressure of the liguid at the element, while the tan—
gential component depends on the viscosity of the liquid and is deter—
mined by the motion of the liguid in the boundary layer. The vector sum
of all the clementary forces normal to the bottom is denoted by N, and
the vector sum of all the forces tangent to the bottom by F the force
N being called the normal force, and the force F tho frlctlon force.
For a bottom with cylindrical curvature (only the cylindrical insert is -
wetted) the force N is perpendiculayr to-the generator of the cylinder
while the friction force F 1is parallel to the generator (fig. 1).

Denote by M the sum of the moments of all hydrodynamic forces act—
ing on the elements of the bottom relative to the transverse axis passing
through the keel at the step., ZIvidently, the magnitude M is determined
by the law of pressure distribution and the frictionmal forces on the
wetted surface of the bottom, For bottoms streamlined in the longitu—
dinal or transverse directions the friction Torces in general affect the
value of the moment M., 1In the case of planing of a flat rectangular
Plate the moment relative to the rear edge does not depend on the fric—
tion force.! A bottom of given shape may plane with various geometric
orientation relative to the water and with various values of the given
mechanical magnitudes.

The disturbed steady motion of the fluid for a forward horizontal
motion of a bottom of any fixed shape (possibly with several steps) is
determined by the following paremeters:

b width of the bottom at the first step
1 wetted length along the keel

6 trim angle

v  speed of motion

In addition to these parameters the motion of the fluid depends also on
the values of the physical constants:
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g acceleration of gravity
v coefficient of kinematic viscosity ..
P density of the fluid

Thus for steady planing, all mechanical characteristics are func—
tions of the above seven magnitudes. In particular, '

.~

N f(_b: 1, 6, v, 8 Py v )

F q)(b: 1, 0, v, 8, 0,V )

M =W(b: 1, 6, v, 8 P, v )

To determine these functional relations is the problem of experi—;
mental and theoretlcal investigations,

In order to reduce the number of independent variables determining
the _motion, it is convenient to comsider simultaneously the combination
of all dy: dynamically similar motions for each condition of motion. For
each of these dynamically similar motions all the nondimensional combi-
nations formed from the mechanical magnitudes have the same value. Every
combination of motions is characterized by nondimensional magnitudes.
The system of similar motions is now determined not by eseven independent
variables but only by four nondimensional independent paremeters. For,
since the value of the nondimensional parameters does not depend on the
system of measuring units employed for the dimensional magnitudes, it
mey be assumed in studying the dependence of nondimensional magnitudes
on the defining parameters, that theAdimensional parameters are measured
in a special system of units in which & certain three of the fundamental
barsmeters always have a value equal to unity. For example, teke a sys—
tem of measuring unite in which:

b' =1, g' =1, and= p! =1
In this specialﬂ@ystem.of units the magnitudes 1', v', and v' are

expressed in terms of the values of the corresponding magnitudes 1n any
system.of units by the formu¢as.

__2.".=-7‘_’ _V'=.,-Y-—. , and vt = Bé=-v—:zp-
Ty L JE J e Jep, Vv
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Therefore, all the nondimensional characterlstics of the planing
condition may be considered as functions of the followlng feur nondi-—
mensional combinations: .

6 trim angle /\
% = A aspect ratlo of the wetted surface on the first step

v

J &

= cv = F veloclty coefficlent or Froude number

> . R Reynolds mmber

v

In particular:

N
—_—= a (e,k, JR)
o Cg = Cp Cy
2

F
T“cf—cf(ey A': CV, R)
pé—-bl

From these very _ilmportant conslderations 1t follows that all the
hydrodynamlc forces acting on the bottom are simply proportional to the
denslty of the fluld. In dealing with tests on a single fluld at a sin-
glo tempereature three of the seven magnitudes determining the steady
planing — namely, g, p, and yp - are fixed, and therefore the essen—
tial magnitudes will be only four: namely, 6, b, 1, and v, which are
equivalent to the four nondimensional magnitudes 6, A, Cy, eand R,

From this polnt of view, the introduction of nondimsnslonal parameters
appears not to simplify the problem. However, it 1s more convenient to
employ the nondimensionalAparameters because they have absolute values
emss:l% cortaipn physical effects. If dimensional paraemoters are em—
played, olr values will depend on the assumed srstem of measuring
units, and for this reeson, their numerical values will not ln them—
selves be significant, Moreover, a nondimensicnal system of parameters
1s sultable for model tests,.
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In practice 1t 1s often more convenient to use other independent
parameters determined by the motion of the hody on the water. Instead
of the wetted length 1 and the trim angle 6 the follewing knowgammr-
nitudes may be taken: namely,

A the load on the water . =

M, the external moment abeut the transverse axis passing through the
rear edge of the step

For steady motion -
M4+ M =0

The magnitude M; camnot, in general, be preassigned, since it is
detormined by the weight and the position of the centeér of gravity® and
depends on the position of the line of action of the thrust and the mng—
nitude of the thrust. Mcreover, for seaplanes the moment M, may
gssentially be determined by the asrodynamic forces, in particular, tho
forces acting on tail surfaces, which in turn depend on the anglec ef
inclination of the control surface and on the angle of take—off of the
seaplane on the water. For thls reason, instead of the moment M;, the
trim angle 6 is often choseq%\ In testing models both M; and 6 mnmay
be given. Under full—scale condlitions 1t is generally simpler te meas—
ure and assign, with the aid of the control members, the angle 6.

If a nondimensional system of parameters is used, then instead of
the aspect ratio A there may be introduced the parametor Cgp or the

parametor QA:

A
Ca = —=3

p &b

The nondimensional coefficilent QA 18 called the load coefficient.

Evidently, in the general case,

Ca = Calr, 6, Cy, R)

1The moment of the_ggiggnjln general depends on the trim angle, but]

the change in the lever arm of the force for small trim angles is not
large, so that in practice this change may always be neglected.
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Thus, In replacing A by CB or QQ the dependence of the megnitudes

considered on 0, CV;\ and R changes.

There, now, can be written the equations of the forward motion of
the bottom with congtant horizontal speed. For simplicity, it is neces—
sary to take into account the case where the bottom has a cylindrical
fitting strip. By projecting the forces on the horizontal and vertical
directicins and setting up the equation of moments with respect to the
transverse axis pasgsing through the rear edge of the step there is ob—
tained: —

X —-—Fcoge 8 —Ngind =0 (1)
Ncos 6 ~Fsginb —-A=0 (2)
My + M=0 : (3)

where X 1s the horizontal thrust, equal to the resistance. For given
A, v, 6, and b equation (1) permits Getermination of the resistance
and hence the requlred thrust. :

Equations (1) and (2) may be simplified. Since the angle 6 in
practice is always emall and the force ¥ by comparison with the force
N ig small,* there may be written '

X=F+ A 0; N=A

vhence is obtained:
C - N A _Z
B~ .2 T T2
v= 2 P77 42 CF
2 2

If the external moment is given, the angle 6 for s given load is
determined from the moment equation (3).

The following three nondimensional systems of parameters determin-—
ing the state of steady planing have been indicated:

1The angle 6 1is of the order 6 < 0.2 radian x 129, the fric-—
tion force F <« 0.1 A.
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I. 6, A, Cy, R

II. 8, Cg, Cy; R
III. 8, Cy, Oy R

In certein cases instead of the trim angle 6 i1t is more conven—
ient to assign the nondiwensional moment coefficient, connected by A
simple relationb)with the acting external moment. Sometimes, in place
of the angle 6 there may be glven the position of the center of pres—
sure, which is determined by the given distribution and values of the
external forces (not hydrodynamlc) acting on the planing body. [Eygtem I
fundamental characteristic of the velocity field of the disturbed motion
of the fluid. t§zg§gms I and II are used mainly in experimental investi-
gations on problems commected with the physical side of the planing
phenomenon. / System III is widely used in technical applications. The
coofficient "CA 1is a characteristic structural parameter which for a
given width (glven,ilpat) ig determined by the load on the water. For
the model or full-scale test the effect of the coefficient Can 1is
equivalent to the effect of the load on the water, a fundamental charac—
teristic magnitude,

For boats the bottoms of which differ little from a [lat shaps,
systems II and I1I are evidentleconnected with each other. In this
case:

In a number of problems, systems I and II are more sultable since in
this case for the planing condition the dependence of the velocity field j
of the disturbed motion on the Froude number is not very apprecisble, /

and therefore the number of 1ndependsnt parameters is reduced to three. /

The Reynolds number R may-also be expressed as:

; Zp 38
R-Y2__¥ ¥& ___Cv'/___g_bsle
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In tegts with the same fluid at constant temperature and with the
same model (b = constant) the Reynolds number ls evidently simply pro—
portional to the Froude number, F¥For this reason, in model t&5ts the
system of parameters

9, CA’ and. CV

completely determines tthmotion and therefore the resistance, hydrody—
namic moments,and so forth, o

Besldes the systems of parameters I, IT, and III, the following
systems mey also be used

’ 8, Cp, Cy, and B = V& o2
v

oxr . .
6, Cgy, Cy, and B

The effect of the parameter B iz equlvalent to the effect of the abso-
lute dimensions of the model, Evidently, this parameter may have an ap-—
preciable effect only in the case where the Reynoldes number has an
appreciable effect, that is, 1ln those caseg where the viscosity of the
fluid has a considerable value, For the parameter B there may be
e e s [T

where ' 1s the coefficlent of kinematic vgscosity in the special syse
ten of unite glven previously.

The guality of the planing bottom is characterized by the ratio of

the resistance to the load on the watexr:
e

m
]
= e

This ratlo is denoted as the planing coefficient./N he reciprocal magni-
tude is denoted as the efficiency: '"

B UV

|
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K=%-4
€ X
Evidently,
C.a
€= 06 + -E—-
Cp

Later, the conditions under which the coefficlent ¢ has the minimum

value which corresponds to the maximum value of the efficiency will be
coneidered.

2 EXPERIMENTAL AND THEORETICAL DATA ON THE DEPENDENCE OF THE LIFT FORCE
AND THE FRICTION FORCE ON THE DETERMINING PARAMETERS
Lift Porce

As has been seen from the general considerations of the dimensional
theory, it follows that for steady planing at small angles of attack

i A
= = - = CB(X: CV: R, 9)
_p2 p X p2
2

Now, consider_how the coefficient Cp depends on the above varia—
b%/#, The force N is determined by the law of the pressure distribu—
tion on the wetted surface.\ Since the pressuregAire determined by the
external potential flowfmhich may be determined theoretically without
taking account of the viscosity, it is evident that the Reynolds number

has no effect on the value of ¥, and therefore it may be practically
assumed that the coefficient Cp does not depend on the Reynolds number

c?
R.[\Planing bodies generally are approximately flat in shape. In plan—
ing on the surface of the water the elements of the wetted surface have
a small inclination to the_horizontal, /From theoretical considerations
freference 1) it follows that in this cabe it may be assumed that the
coefficient Cp depends linearly on the trim angle 6. For a bottom

with cylindrical insert CB/NGB simply proportional to 6.

e e e,
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Moreover, it follows from theoretical oconeilderations that for large
values of the Froude number C; the weight of the fluid does not essen-—

tially affect the motion of the fluild near the planing bottom (reference
1). The motion of the water by which the pressure on the bottom is de—
termined may be obtained Tor large values of the Froude number without

taking the weigh@linto account, Therefore, for large values of CV the

value of CB does not depend orn C... For smasll values of Cv in the
ploving and transition stage the offect of the weight of the liquid is

essential, This effect may to a flrst approximation be taken into ac—
count by the addition of bydyrostatic forces, which for large wvalues of
the Froude number are negliglbly suall in comparison with the dynemic
forces. In the expression for the coefficient Cp the added term de—
termined by the hydrostatic forces is inversely proportional to the
sguare of the Froude nuuber (vafe'ence@ 1 and 9) This term very rapild—
ly decreases with increasing Cy.

On the basig of the analogy betwesn planing and the motion of a
wing in the fluid there is obtained for the flat plate the following
semiempirical formula for the dependence of the coefficient Cp on the

fundementeal parameters of the motion (references 2, 3).

9.7 M _ | A(0.92M — 0. 38)~

- 1
1+ 1.19» VC' ( )

Ce =

Figure 2 shows the agreement between thie formula and the test_resulis,
The second term of the above formula represents the hydrostatic forces,
et bt A .

For small A = %-‘< 1 and large values of CV only the first term need

be used:

Cp = 9.7 a8 (2)

14+ 1.

Begides the above formulae derived on a theoretical basis, there are
a number of purvely empirical fOTEII&ES." In 1935 Perring and Johnston
(reference 4) representing the 1lift force in the form

= kbl pve 6

proposed for the coeifficient k the following empirical formula:


http://3'rou.de
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X 5"0;11-5}:.’-0.43 e (3)

C
Since -é-§ =2 k A, this is equivalent to the followling formula:

Cg = 0.91°° 5% (h)

In 1936, B, Sifman (in an unpublighed paper) improved somewhat the
formula of Perring end Johnston by proposing the formula

k = —, whence Cg = 0.94% /X @ (5)

This formule is more suitable in computations, since it contains the
square root of A instead of the complicated power 0,58,

In 1938, Sottorf (reference 5) proposed Ffor the coefficlent
Cs = 2 k the empirical formula:

' fo)
WU

Cq =

i

3—' ; whence Cp = 0.85 /A 0 (6)

&

Thus, it is seen that essentlally 'the same Tormula was proposed by a
numbexr of authors.

Figure 3 shows a comparison of the test results with the theoreti—
cal formula

k=22 X | (7)

which is obtained from the wing theory on the basis of the analogy
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between the planing phenomenon and the motion of a wing in an infinite
fiuld. There ig also shown on figure 3 the curve corresponding to the
formulas

_ 0.35 T (8)
14 1. A

which is obtained from formula (2). This curve is in satisfactory agree—
ment with the given experimental results for smell A, (This figure was
published in reference 6,)

On figure 4 are given the curves for the dependence of the coeffi-

cient k¥ on A by formulas (L), (5), (6), and (8).
e

For very small X approaching zero, formulas (3), (5), and (6) give
large values for the coefficlent %k approaching infinity. Formula T for
A =0 gives a finlte value for the coefficient k. From theoretical
considerations it is evident that the coefficient k sghould be finite
for A =0, and therefore formula (2) for the coefficient Cp for very

A Dbetter corresponds with the true conditions. On the other hand, the
theoretical considerations on the basis of which formule (2) was obtained
correspond better with the true condlitions when A is very small.

If Cp, Cy, 6, and R are chosen as the fundamental independent
parameters, the expression for Cp is easily obtained from the equation

of equilibrium along the vertical, For small trim angles ihdependent of
the form of the profile there is obtained: T

2C
Cp = 12“ - ‘2‘- = 2 (9)
v v e
Y2 p2 2 G
- °3

From formula (2), for determining A the relation is obtained:

(10)

whence
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C c
Qi — or. . A= == 2 - (11)

The above formula may serve to determine . the wetted length for given
trim angles and the coefficient C or the coefficlents C and CV.

It 1s evident that-for the planing condition the denominator in formula
(11) is positive.

For a flat plate the center of pressure is located at a distance of
0.75 1 from the rear edge. (Experimental and theoretical data on the
center of pressure are given in references 2 and 3.) For bottoms with
cylindrical insert the position of the center of pressure is approxi~—
mately the same as for the flat plate. [On the other hand, the position
of the center of pressure is determined by the extermal momente and the
load on the water, For planing bottoms the center of pressure, and
therefore also the wetted length, is determined essentially by the
center—of—-gravity position, In this case, equation (10) may serve to
determine the trim angle 6, whence the result is obtained that the trim
angle is proportionael to the load and decreases with increase in the
velocity.

The Friction Force

To determine the friction force

Bive

2

it is necessary to know the functional relation

e s e e e

Cf = Cf(x, Cv, R, G)

At the present time, sufflicient knowledge is not available on this func—
tion. [The value of the coefficient Cp 1s determined by the velocity

field of thé disturbed motion of the fluid. It may be assumed that in
the planing condition the welght of the fluid does not have any effect on

the disturbed flow of the fluid outside and within the boundary layer,
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From this it may be concluded that the fyrictlon coefficient does not de—
pend on the Froude number. Thus for the planing condition thsre results:

Cf & Cf()\., e, R)

In shipbuilding practice there is taken, as a starting value for
the friction coefficient, the value of the coefficient for smooth flat
plates placed perallel to the towing velocity for the turbulent condi-—
tion, In this case Prandtl proposed f'or the friction coefficient the
formula:

} .
Cr = 0,074 _ 0.07k  (12)
(VZ \0.2 RO.Z }\'0.2
v /

where 1 1s the dimension of the'plate in the towing direction. Besides
this formula a number of others have been proposed. Here also is given
the formula of Prandtl-Schlichting (reference T)

= e 20D (13)

and the formula for the friction coefficient in the case of an initial
laminar layer:

_ 0.455 1 700
Cf - vl \2-58 vl (lh)
(62)™ 2
v v

The values of the friction coefficient by formulasz (12) and (13) differ

little from each other in the range 10° < VL < 108 (fig. 5).
v
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On figure 6 are plotted the test results obtained by various authors
and the values of the friction coefficient by formula (23). These test
results were taken from the work of Schoenherr (reference 8).

In practice it is possible to determine the frictional resistance
of{/ehips as the resistance of a flat plate with an ares equal to the
wvetted area of the body. The friction coefficlent may be obtained from
one of the above formules and some corrections made on the roughness of
the surface, the presence of rivets and projections, and curvature of
the surface. At the present time, the effect of the above factors may

be roughly estimated from the data of special tests (reference 3). Here
- it is noted only that the above factors increase. the friction force, the
amount of increase being at.tigg§ of the order of 100 percent.

The value of the friction coefficient in planing depends evidently
on all three variables., The problem of determining. the friction force
in planing is complicated by the fact that the pressure distribution over
the wetted surface 1s very irregular and depends on the angle 6 and on
the aspect ratio A. At the forward edge of the planing surface the
fluid 1s thrown forward with a velocity greater than the planing veloc—
ity, and therefore the friction force at the forward part is directed
forward so that the over—all value of the friction force 1s decreased.

The investigations conducted by the method of the theory of the
boundary layer to determine the dependence of the friction coefficient
on the trim angle do not provide a reliable formula for the friction
coefficient. It is clear only that for otherwise equal conditions the
friction coefficient decreases with increase in the angle of attack as
was also observed in tests (reference 9)./ From the above-mentioned
tests on flat plates it follows that the planing coefficient of friction
in many cases has values near the friction coefficient of flat plates
towed in the direction of motion (reference 5).

In view of the absence of reliable data on the dependence of the
planing coefficilent of friction on the basic parameters of the motion,
in what follows use will be made of the Prandtl formmla in the theoreti-—
cal discussion.

/
3. RESISTANCE/AND SCAIE EFTECT

For a planing bottom with cylindrical insert the water resistance
may be expressed as:
W =X = A(6 + F)

or
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A
W <e+ O -)A:EA (1)
Cp

]
/"\
h'Fﬁ
\\,/

m  Cg A

The ratio of the megnitude of the angle 6 to i~= —g——
B

ratio of the form drag to the friction drag. In planing at large angles
of attack the wettéd Tength is smail (X "small). The form drag is
large in comparison with the friction drag. At small angles of attack,
on the other hand, the wetted length is large (A large) and there re—
sults large friction drag and small form drag.

is equal to the

On the basis of formulas (10) and (12) (sec. 2), for the flat plate

there is obtained for the planing coefficlent € :
' {

. 0.074(1 + 1.4 a) A0 °
R°2x 0,7Tn6

1
The wetted length Z(IK = o > is difficult to measure on models and
\

particularly under full-scale conditions, Moreover, for small A the
wetted length fluctuates somewhat, even fox _quiet steady motion of the
model. The indeterminacy of the bounlari 08 of the wetted length is

shown by the water droplets and foan~form1ng spray at the forward edge.
For this reason, instead of the espect ratio A it is more convenlent
in practice to make use of the coefficient

A
Cg = ;;”w_
- p2
2

For a flat plate there resulis:

0.7 % 6 — 1.4 Cy

Thus it ig found:
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CR°2 R9*2 (0.7 n 6 — 1.4 C;)°°®

From formulas . (2) and (3) it is seen tﬁat.ﬁhe coefficient . ¢ (the

efficiency) does not_depehdl on the Froude number .CV = —Y—, This

A~ gb
ies due to the fact that the weight of the water has no app% clable
effect on the disturbed motion of the water near the body./ Here, no
account was teken -of the hydrostatic 1lift force which in pI&ning is
negligibly emall in comparison with the 1ift force due to the dynamic
reaction of the water. | It is evident that for the planing of bottoms of
a more complicated twogtep shape the weight of the water likewise has
no essential effect on the hydrodynamic forceziiThus,for planing

€ =€ (Cg, 6, R) (k)

For a flat plate, formula (3) gives the form of thig function. For
curved bottoms thers are neither theoretical nor emplirical formulas
similar to formule (3).

Since the coefficient € does not depend on the Froude number but
depends on the Reynolds number, it is evident that in model tests fol-—
lowing the similarity laws the value of ¢ is the same for model and
full scale, '

A
The planing states for model and full scale are Eimilar if CB’ 8,

|
and R are the same for both. It is evident that the similarity condi-~
tions Cy = constent, 6 = constant, and R = constant are necessary and

sufficient conditions. In tests with the same fluid the constancy of

R = ¥b 1s equivalent to the constancy of the product vb., Hence, on

v
decreasing the dimensions the velocity should increase, If the dimen—

gions of the model are smaller than the full scale, it is necessary for
similerity of the motion that the velocity of the model be less than the
full-scale velocity. In model tests following the similarity laws of
Reynolds, the 1ift and resistance forces are the same for similar

1The velocity has an effect on the efficiency through the coeffi-—
cient Cp and through the Reynolds number,
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moticns. In passing from model to full scale, the observance of the con—
dition R = constant is required only in deterwining the resistance of
the water. In determining the 1ift force as a function of the fundamen —
tal parameters it is not essential that the condition R = constant be
observed, because the 1lift coefficient does not depend on the Reynolds
number (see below). If the condition R = constant is not observed, the
regigtance coeffici "€ for otherwise equal conditions has different
values for model and full seale, and therefore the model resistance com—

vggggd.to full scale does not agree with the full-scale resistance. This
difference in the resistance is known as the scale effect.

1ng the Froude laws there la obtained £ i

€1 = Bz; CBx = CBz; Cy = —— = 5 R, # Ro

Evidently

vo b bo \
TR T 1.)_2-) (if by > by, then Rs > R;)
v i

The full-scale Reynolds number is greater than that of the model if the
full scale is gresater than the model, The change in the resistance
coefficient is given by the formula:

0.074
€1 = €2= 2 0O 0
ZRY?(0.7 w6 — 1.k Cp, ) 8
:’ bl\O.B" Fl ;" bl\OQS"
! bo ) J Ay | b ) i oL

The above formula shows that €, — €, > 0 if by < bo, that is, the
registance coefficient decreases in passing from model to full scale,
Since
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0.8 L oL
0.2 Ay 1 1.
& ‘€a=< A ) : [ c.8 T 0.3 ] L (6)

The coefficient before the term in brackets does not depend on the scale
in model tests with equal Froude number.

b
For the same ratio —= the difference €y — €, 1is smaller the
2

greater the Reynolds number, that is, the greater the velocity or the
greater the width of the model. It must be noted, however, that the
above decrease in the scale effect with increasing width of the model
occurs rather slowly since R; enters to the 0.2y power, For a fixed
by the magnitude of the scale effect is determinéd by the factor

The full-scale resistance W'y, obtalned by computation from the
resistance of the model by the similarity law of Froude, is given by
the formula:
" Wy = €3 A

and the actual resistance by the formula

From formula (5) it is evident that

W'a=-Wp €, — €5 €1
Ny = = : = i - (7)
Wo €, 14+ =
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The megnitude 1n; characterizes the gcale effect. From formula (7)
it follows thet n3; 1s always less than El. The value of 1, is near
£ when the ratio of the form resistance to the frictional resistance

1
-

is small, << 1, This will be the case in planing at small angles

1
of attack, For planing at large angles of attack the ratio of the form

6
to the frictional resistance is large, A; >> 1 and therefore

, 1
ny << 51 c ngriher on, it will be shown that the minimum resistance
occurs when The frictional resistance is near in value to the form re—

' B A, 00

~ 1, Hence for the optimum planing condition

sistance; that.ils,
B

o 1
N1 <~ 251

Making use of the graph of figure T, the value of the scale effect

_ b 1
is readily evaluated., For example, for gi-= 8 under the optimum
2

planing condition there is obtained
100 11 = 2k percent

In relation to the full-scale resistance thepfrrors in the resist-
ence obtained by computation according to the similarity lew of Froude
will be still larger: namely,

W' o = E‘TZ

100 = 33 percent
Vo

. urther, also consider the change in € in computing this coeffi-
cientﬂfrom.one gpeed to another for equal Cg and Q.f In this case:

I

v
bl = bg; CBl = 032§ Vo ;é vy and Rz 74 Rl i‘

-
e

e

kan@ there is readily obtained:
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€1—€2=f[1——<1{>_ ] ===t o (8)

) Thus, for equal Cp eand 6 i1f v, > vy, then €, < €, . With
increase in the velocity for otherwise equal conditions the resistance
coefficient drops. Evidently, the difference €, - €, increases with
decrease in the ratio vl/vz more slowly than with decrease in the ratio
b;/bs in tests following the Froude law.

The resistance for the speed v, obtained by the formula
W's = €, Ay will be denoted by W'y; then

Wo =~ Wa o
L = o (9)
2 14+ —=—
¥y
vy 1 . < ps
for —— = 5 for the optimum planing condition there results:
Va
1 -
n2 ® 3 £, = 0.07

Thus the error in the resistance for the speed 2 v; obtained from the
value of €, for the velocity wv; 1s of the order of 10 percent.

The results obtained from formulas (6) and (8) are intimately con—
nected with the Prandtl formuls for the frichion coefficient. It should
be noted, however, that the poselbility of weking use of this formula
for the friction coefficient in planing is not yet clarified.

For a model with a complicated profile shape (b is fixed), the de—
vendence of the coefficient € on Cp and 6 may be determined
experimentally for a certain fixed speed. These data permit determina-—
tion of the full-scale and model resistances for a glven load A and
trim angle 6 at all planing speeds if the effect of the Reynolds num—
ber on the value of the resistance coefficient is neglected. It is
sufficient, in fact, to obtain the complete hydrodynamic characteristics
only for a single planing speed./|With the ald of these tests the depend-
- ence of the coefficlent € on Cp may be determined for constant
values of the
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trim angle €. With the aid of this family of curves € can be readily
constructed as a functlon of the speed for given lcads and trim angles.
The latter may be assumed or chosgen as the optimum, ZThis permits con—
structing the resistance curve for large speeds for which the resistance
of the model camnot be measured because of the limited speed of the tow—-
ing carriage.

Figure 8 gives the test curves from the flat~plate tests of Sottorf
on the dependence of € on Cp at conetant angles 6. It is seen

from these curves that the effect of the speed (Reynolds number R = b
v

since b = 0.3 m = constant) on ths value of € as a function of Cy

is small. t may therefore be assumed that in this case the previous re—

merks are confirmed by test rssults,

tat has been said previously is true only for the planing condi-—-
tion., For the plowing condition at small values of the ¥rcude angle the
1ift force is determined essentially by the hydrostatic ForcsBr 1n this
case the dynamic forces also depend on the Froude number.

L. THE CPTIMUM PLANING ANGLE OF A FIAT PLATE

The efficiency of planing of a pottom is characterized by the ratio
of the resistance to the 1lift € = .'i_ Eor a given velocity and load on
n A

on the water the smaller this yatio the more Tavorable the bottom./ For
a flat plate then results: —

(1)

At the planing condition the coefficient € depends on three param-—
eters. These may.be--taken as the nondimensional msgnitudes 6, A, and
R; or 6, Cg, and R. For practical purposes, however, it is conven—
ient to use the trim angle 6 and the dimensional magnitudes A — the
load, and bv — the product of the speed by the width of the plate. Evi-
dently, this dimensional system of parameters ig\uniquely expressed in
terms of the system of nondimensional parameterd? -

Now express the planing coefficient € in terms of 6, A, and
u=p % b2 v2, Then:
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far6 ' A
- Cg = 24 = A ;- whence A 2

- - (2)
pb2v® 1+ 2f % f(u e —L4a4)

where f 1s a test coefficient the theoretical value of which is equal
to unity. According to test data for X\ > 0.2 this coefficient may be
taken equal to O0.7. This coefficlient is left undetermined since very
emall espect ratios are being dealt with for which no test data are
available, and for small aspect ratios th%theoretical valus f = 1 is
very probable. .

For the friction ccefficient the Prandtl formula is used.*

o = 0.074 _ 0.07h(p m)®2 pO-2 (3)
- v 1\°-2 - 20-2 0.1
(5)

With the aid of formulas (2) and (3) there is obtained for the planing
cosfficient:

€ =06 4+ EAC:2y%9 (yo—~LAa)yo.8 (%)
where
0.
E = 0.07h_ pO.l 0.9 f—O.8< _Z_ > 2 (5)

*All gqualitative results obtained below remain valid if for the
friction coefficient the more general formula

m
Ce

v 1 a -

(D)

is taken, wvhere m and o &are constant (0 < o < 1),
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By setting for water p = 1000/g = 102 kg sec®/m*, v = 11 X 1077 m?/sec
(this corresponds to the value of the kinematic viscosity ccefficient of
water at a temperature of 15° to 16°) and f = 1, there is obtained for
the valus of 1lg;0 E:

lglo E= §; 3707

From formula (L) for a given load, speed, and width of plate, the
value of the trim angle ' 8% ie readily determined; for which the coeffi~
cient ¢ has the minimum value. For 6%* the eguaticn,

S 1-0.8Fut® 2 (ue* - 4 E)Y 8 =0

df

results, wherce is obtained:

N id9
AL o.one! BTN (6)
b2 VE \. A /

6% = 0,012

For this value «f the trim angle there is obtained:

" A b v \1/%®
€% = 0.012 ———— + 0,095 ( — ) (7)
b= = A s
and
. Alo/a
A* = 0,1U8 F (8)
(bV )lg /2

Evidently, the numerical values of the coefficients in these formulas de—
pend cn the assumed system of units. In formulas (&), (7), and (8)
these values correspcnd to the kilogram, meter, sscond system of units,

On figure 9 are given the curves for 6% and €% as a function of
the load A kilograms for bv = 1.8, 2.4, and 2.85. At a width
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b = 0.3 meter, this corresponds to the speeds v = 6, 8, and 9.5 meters
per second. On thée flgure are plotted the test points obtained by
Sottorf. The agreement of the theoretical curves with the test results
is entirely satisfgctory. /At a speed v = 6 meters per second there is
obtained for the width of the plate b = 0,3, 0.4, and 0.475 msters. It
ig evident from ths curves that,in these examples, at large loads the
planing coefficlent rapidly decreases with increase in the width, and
therefore more favorable planing conditions are obtained. As is shown ly
formula (8), with increase in the load A, the value of A* increases
rather slowly: with increase in the speed or the width, Ax* decreases/q.
rapidly.

The position of the center of pressurc along the keel is determined

by the Ia%ue of the wottecd length and therefore by the value of 3 = ;,
wiL

For a float, the position of the center of pressurc is determined essen—
tially by the position of the center of gravity. Therefpre the favor—
able center—of—gravity position for a given load and width greatly de—
pends on tho speed., For a given lcad and speed the favorable center-ef—
gravity position strongly depends on the width,

5. ON THE OPTIMUM WIDTH OF A PLANING FLAT PLATE

Formulas (6), (7), and (8) in the preceding section give the most
favorable valucs of 6%, €%, and A*¥ for a given value of the lecad A
and product bv. From these formulas it is seen that for a given value
of the speed the minimum valuc of the planing coefficient may be af—
fected by a choicc of the width b.

mun value €% agsumes ites least value. differentiating the exprog—
sion for € ¥ given by formula (7) of th& Preceding section thers is
obtained

Now will be found the value of the Zroduot bv for which the mini-
BJ
Y

A¥*epe/9
€~ _o.02h __;Q¥;§ + 0.011 (bv) ~“717 . 0
a(bv) (bv) © AL/S

whence

1The results of this section follow from the assumecd empirical for—
mulas which are extended to conditions of motion not investigated experi—
mentally.

e.J"J’Y:‘ "
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(bv)** = 1.51 pro/as (1)

Substituting the value for the product bv in formulas (6), (7), and
(8) (sec, U4), there is obtained:

o¥* = 0,05 a2/2e (2)
ex# = 0,105 AT1/T (3)
and
1 :
AEF = Y
Y (L)

From (2) and (3) there is obtained

- 5 19 £va
€ XH - I e-)(-.‘ 5

The obtained formulas give the values for the fundamental character—
istics under the most favorable planing condition of a flat plate as a
Tunction of the load. From these formulas the following conclusions may
be derived. L@E a given speed v and load A there exists an optimum
width. égggwoﬁtimum value of the width is proportional to A1 ©/19 that
is, increases approximately as the square root of A with Increasing
load. LFoxMa glven load the optimum width decreases with increasing
. ) speed Inversely proportionzl to the hpced./ The optimum valuc of 1L/e
& ; (the minimum value of the planing coefficicnt) depends only slightly on
the load, and increases with incrcasing load, (These results arve, of
coursc, not valid for very small loads.) [fgg'a flat plate for loads
J A = 10 to 1000 kg, €¥% = 0,09 to 0,077,, and therefors the optimum
value varics within the Iimits 11 to 13. / The optimum anglc 6%* dupcnds
only slightly on the load and drops with incrcasing load.

At the optimum planing condition the frictional rOSiStZQEG constl—

; . tutos somewhat more than 50 percent of the total rceistancef\ The opti-
© i mum planing condition cxists for small wetted lengths, since

WIFF = L Lﬁiﬂthe optimum condition the center of pressure 1is very ncar

tho rear edge of the plate.
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The platesg used in the tests of Sottorf were narrowcr than the opti-
mum, (For the test data of Sottorf, formula (6) gives an optimum width | - ,
cqual to 0.77 meter for a very small load. This explains why in the {
tests of Sottorf the minimum value for €/ldecreased continuously with t
increasing width. : _ , / Z./

Sy
1
7

In the planing condition when the wetted length is very smell,
M << 0.2, it is probable that the actual value gives the effect of theA / 30
spray falling on the surface of the water at thefrcnt edge, thereby dis—
turbing the steady character of the motion of the water. Moreover, for
small values of A the planing is unsteady. Special tests are rcquired |/ 3/
to explain the cexistence and possibility of using optimum conditions in N
changing the width of the plate.

If for the coefficicnt CB one of tho empirical formulas of the
Tform: .

CB = C)VB

1

igs used where c¢ is constant — B —2- in the formula of Sifman and

Sottorf, and O.48 in the formula of Perring and Johnston — the optimum
width is not obtained; that is, from these formulas it follows that

the planing coefficient always decreases with increasing width. This
result was obtained as a consequence of the unlimited increase of the

C
coefficient k = —2——?:5 which is refuted theoretically, and test data

for very small A are not available, ﬁ[‘_}f;influence of the scale effect
on the magnitude of the optimum width wi ifiow be considered, éThe opti—
mum model and full-scale widths are denoted by by and by, réspec—
tively. For model and full-scale speeds and loads for which the
comparison is made, the relations are:

These relations correspond to the similarity law of Froude. From formula
(1) there is obtained:

A11°/19 A210/19

by = 1.5k =Dy 30/19-1/2 _ bl- mt1/38

b2 = 1.5)4'
Vi Va2

e

hence,
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bp = m*OF b, (6)

and not by = mb; as follows from the Froude law. [ Thus, the optimm
wldth determined on the model and ¢ ted to full e by the Froudo
law will not be the optimmm for scale, Thls must be understocod in
tho sonse that after computing the full-ecale wildth according to Froude ,
an officlency may be obtained equal to the cptimum on the model but for
the full-scale efficlency a higher valus mny bo obtained by a different
choice of width./\ Since the exponent 1.08 differs,littlo fram unity,
tho above conclusion is only of theoreticgl value, Lligw the planing
toced varies wlth increasing load for a glven r will now be duvter—
mined, If the powor is demoted by E, thure 1s obtalned:

—————————

EmWv = &%Ay

whence by formula (3) thore results:

1 10E (7)

Va =t
€% A pl®/10

Hence the planing spoed fer the optimum condition is epproximately in—
versely proportional to the load, Formmla (7) may be also exproseod as:

v = 10 EA’-/“ = 10 p AL/18 (8)

where p donotes tho power per unit load on the water. From formmle
(8) 1t Pollows that with increasing load for a glven power por unit
welght of the float, tho speed increases with increasing load., Since in
forrmla (8), A enters to the 1/19th power, this increaso is very slow.

Translation by S. Relss,
Natienal Advisory Comlttee
for Aeronnutics,
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Figure 1l.— Schematic representations of hydrodynamic forces
acting on a bottom with cylindrical insert in
planing on the surface of water.
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Figure 9.- Curves of optimum values of the trim angles 0%

and planing coefficlent ¢* for constant values of
the product bv. Curve I corresponds to bv = 1.8, II — bv = 3.4
and III — bv = 2.85. For b = 0.3, I corresponds to v = 6 m/sec,
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corresponds to b = 0.3 my II - b = 0.4 m and III — b = 0.475 n.
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